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Abstract

This paper investigates whether a location’s growth benefit or suffer from proximity

to a big city and explores the underlying mechanisms. Using county-level data from

China for 1990–2020, we find that an area’s being close to a big city (in the 150–250

km range) reduces its decadal population growth rate by 2.9–3.5 percentage points,

which we call the urban growth shadow effect. While previous core–periphery models

give transport costs a central role to explain the urban growth shadow effect, we show

empirically that for an economy experiencing rapid structural transformation, initial

employment share in agriculture is more important than transport costs in explaining

the existence of this effect. The mechanism is consistent with high employment share

in agriculture constituting a labor pool for migration to urban core areas.
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1 Introduction

How does an area’s proximity to a big city affect its growth? This question is of great

policy significance as many governments seek to promote regional equity (Kline and Moretti,

2014; Austin et al., 2018; Neumark and Simpson, 2015; Gaubert et al., 2021). If locations

near a big city suffer population loss due to geographical proximity to a big city, that fact

would imply worsening regional equity in the process of urbanization, especially between the

core and peripheral areas within urban agglomerations. Therefore, understanding whether a

beneficial effect (also called a spillover effect) or a detrimental effect (also called the growth

shadow effect) exists, as well as the conditions under which the effect exists,1 can inform

policy makers’ strategies to achieve desirable goals. In theory, the effect of proximity to a big

city is ambiguous because, on the one hand, being close to a big city increases competition

for resources, which could dampen the growth of the peripheral cities (Krugman, 1993; Fujita

et al., 1999). But on the other hand, the presence of nearby clusters of economic activity

improves market access, benefiting the growth of smaller neighboring places (Redding and

Venables, 2004; Hanson, 2005; Redding and Sturm, 2008; Head and Mayer, 2011; Jack and

Novy, 2018).

While previous theories give a central role to transport costs in explaining the core-

periphery patterns (Krugman, 1991; Krugman and Venables, 1995; Tabuchi, 1998; Davis,

1998; Fujita et al., 1999; Puga, 1999; Cuberes et al., 2021) , in this paper, we provide evidence

that for a country that is still experiencing structural transformation, initial employment

share in agriculture is more important than transport costs in explaining the existence of the

urban growth shadow effect. We empirically examine this question in the context of China

during 1990–2020 because 1990–2020 was a period during which China experienced rapid

transformation of its industrial structure and urban landscapes. There was huge variation in

the initial agricultural share across counties, and huge improvements in the transportation

and commuting infrastructures, which provide an opportunity to assess the relative impor-

tance of transport costs and the structural transformation force simultaneously. Moreover,

the availability of cross-county migration flow data in China allows us to examine how people

moved across space during this period. This is also an advantage not shared by studies that

consider early time periods.

In the first part of this paper, we empirically study whether an urban spillover or shadow

effect existed in China between 1990 and 2020. We construct a panel dataset of 2,234

Chinese counties2 with consistent boundaries in this period. We define big cities (which

1 See Partridge et al. (2009), Beltrán Tapia et al. (2021), and Cuberes et al. (2021).
2 In our sample, we use administrative units at the county level in China, namely “county level adminis-

trative hierarchy,” which includes districts (shixiaqu), county-level cities (xianjishi), and counties (xian, qi,
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are conglomerates of city districts) as the top 20 or 40 largest cities in the beginning of

each decade and exclude those cities from our regression sample. We define the primary

outcome of interest as decadal population growth of the rest of the counties. We compare the

population growth of the counties in concentric rings surrounding their nearest big cities and

set counties located 250 km and farther away from the big cities as the baseline comparison

group. We find that, compared to the baseline county group, the counties located very close

to the nearest big city—within 50 km—grew faster. This positive effect is much stronger and

becomes statistically significant during the 2010–2020 period. Meanwhile, counties located

at a medium distance—150–250 km—grew significantly more slowly: during every decade

between 1990 and 2020, being located within 150–250 km to the nearest big city has a

negative effect on decadal population growth, which ranges from 2.9% to 3.5%.

We then investigate what county-level economic variable explains the existence of the

urban shadow effect. We focus on two economic variables: access to transportation networks

and agricultural employment share. We choose access to transportation networks because

transport costs are given a central role in core–periphery models. In particular, Tabuchi

(1998) predicts that there is a bell-shaped relationship between transport costs and share

of economic activities (population) in core areas. If the economy being examined is on the

upward-sloping portion of the curve, then a lower transport cost—captured by better con-

nection to central cities by highways or railways—would predict slower population growth in

the periphery areas, resulting in the growth shadow effect. We choose agricultural employ-

ment share because it is shown to strongly affect local population growth and the spatial

variation in population density (Michaels et al., 2012; Henderson et al., 2018). We find that,

when initial access to transportation networks is included in the regression, the coefficient on

this term is significantly positive, meaning that being better connected to the core/big city

in the beginning predicts higher population growth in the subsequent period. This result

indicates that the transportation technologies and infrastructure in China had advanced to

the stage corresponding to the downward-sloping portion of the bell-shaped curve. There-

fore, better transportation access cannot be the reason for the existence of the urban growth

shadow effect. In fact, in the regression results, we find that controlling for initial access to

transportation networks does not affect the coefficient on the proximity to a big city dummy

(150–250km).

Meanwhile, we find that when initial agricultural employment share is included in the

regression, the coefficient on the proximity to a big city dummy (150–250km) becomes much

smaller and loses statistical significance, indicating that initial agricultural employment share

etc). Each prefectural city core consists of several city districts. In this paper, we use the term “counties”
to indicate all units at the county level.
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is the “omitted” variable that would lead us to “mistakenly” interpret a negative causal

effect of proximity to a big city on growth. We further investigate why initial agricultural

employment share plays such a large role in explaining the existence of the urban growth

shadow effect. We show that in every period, the employment share in agriculture was

larger in locations farther away from the nearest big city, and such an increasing relationship

stopped at the distance of about 150km from the nearest big city. Moreover, while initial

agricultural share has a negative effect on population growth for an average county, such a

relationship is significantly stronger for counties very close to a big city. The combination

of both relationships results in the following patterns: for areas very proximate to a big

city—where agricultural share has the most negative effect on population growth, agricultural

activity there was very limited, so these areas did not grow more slowly, and in fact, they

grew significantly faster, probably due to the spillovers from big cities. For areas in medium

distances to the nearest big city (150–250km), they had a large agricultural employment

share, and at the same time, the effect of initial agricultural share was very negative; as a

result, the counties in this distance band grew especially slowly compared to the counties in

the rest of the distance bands.

The question is then why initial employment share in agriculture exerts a particularly

strong negative effect on a location’s growth when this location is close to a big city? We

provide evidence that this is because agricultural employees proximate to a big city are

particularly easily attracted there to seek job opportunities. For small counties dominated

by the agricultural sector, the opportunity costs of migrating out of the local county are much

lower; thus, such counties are more likely to lose population in the presence of a nearby big

city.3 We exploit the cross-county migration flow data and estimate a gravity equation

to examine this mechanism rigorously. Using bilateral migration flows as the dependent

variable, we show that origin county agricultural share predicts a larger number of out-

migrants, and agricultural-based counties proximate to a big city are particularly prone to

losing population.

In addition to showing that agricultural employment share is crucial to explaining the

existence of the urban shadow effect, and the heterogeneity of the growth shadow effect

across counties, we also show that agricultural employment share is crucial to explaining

the heterogeneous effects of access to transportation networks on growth. In fact, our es-

3 In theory, migrants can move to any big city instead of the nearest big city, therefore potentially
undermining this mechanism. However, in the data we find that migration is highly localized, and short-
distance migration dominates. As shown by the China Population Census microdata in 2010, the share of
within-province migrants in total migrants was 54.9%, and even for counties located in inland provinces
(which are more likely to send out migrants to coastal provinces), the within-province migrant share was
52.9%. Therefore, the presence of a big city can have a large effect on the migration patterns of nearby
counties.
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timates suggest that the interactive effect between access to transportation networks and

initial agricultural employment share is so large that whether a county completely special-

izes in agriculture determines the sign of the effect of access to transportation networks on

population growth.

In the analysis above, the key explanatory variables—initial agricultural employment

share and access to transportation networks—are endogenous. While the goal of this paper

is not to identify the causal effect of each of these two variables on city growth, we test

whether they could explain the urban growth shadow effect. Therefore, we want to rule

out the possibility that our findings are driven by some omitted county characteristics. To

address this concern, we use agricultural suitability and climatic variables as instruments for

initial agricultural employment share, and use access to historical routes as an instrument

for the current access to transportation. We show that our core results are robust to the

regression estimates using these instruments.

Finally, we discuss the welfare implications of the urban growth shadow effect. Because

we find evidence that workers moved across space to arbitrage income differences, the exis-

tence of the urban growth shadow effect does not imply a reduction in aggregate efficiency.

However, we show that proximity to a big city has a large and significant effect on reducing

the share of college-educated people and prime-aged (20–44) people in the total population

of the periphery counties. Given that college-educated people and prime-aged people con-

tribute more to local fiscal revenues, while the other groups of people presumably consume

more public goods in average terms, the urban growth shadow effect implies a form of fiscal

transfer from the periphery areas to the core areas. Therefore, government interventions in

fiscal transfer might be needed to correct for such fiscal externalities and to promote regional

equity.

Our paper contributes to several strands of literature. The first and most related strand

of literature has empirically assessed whether big cities imposed negative effects on periphery

locations in the context of developed countries, either over a short period (Partridge et al.,

2009, in the United States over 1990–2006) or over a long period (Cuberes et al., 2021, in

the United States over 1840–2017; Beltrán Tapia et al., 2021, in Spain over 1877–2001).

A common finding using long time-span panel data is that at an early stage of economic

development, the shadow effect dominates, whereas at a later stage, the spillover effect

dominates. Both Cuberes et al. (2021) and Beltrán Tapia et al. (2021) interpret this

pattern as resulting from improved transportation and communication technologies over the

respective periods, which have allowed for distributing congestion costs among a wider area

and have improved market access, thus facilitating the population growth in neighboring

locations. In this paper, we show that another economic variable—employment share in
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agriculture—is more important than transport costs in shaping core–periphery patterns when

the agricultural employment share is still high.

The second strand of related literature is a series of studies that link structural trans-

formation to spatial distribution of economic activity (Desmet and Rossi-Hansberg, 2009,

2014; Michaels et al., 2012; Henderson et al., 2018; Eckert and Peters, 2018; Brülhart et al.,

2020). In a closely related paper, Brülhart et al. (2020) document employment growth in

eight of the world’s main economies and find that market potential is losing predictive power

for population growth as the economy grows. Their explanation is that at the early stage

of development, agricultural employment share is high and structural transformation away

from agriculture tends to shift employment to high-density and high-market potential areas.

At the later stage of development, however, agricultural share becomes much smaller and

the force of falling transport costs plays a more important role. Hence, the peripheral loca-

tions suffer increasingly less from remoteness and benefit more from their lower congestion.

Because Brülhart et al. (2020) lack a measure of transport costs across space, this important

explanation is left untested. Our paper focuses on China during a period of rapid urban-

ization and structural transformation and uses rich county-level data—especially access to

transport networks and county-to-county migration flows—to test the relative importance of

transport costs and structural transformation in shaping the core–periphery patterns. Our

finding confirms the important role played by agriculture in determining the spatial distribu-

tion of economic activity, which is also shown to be important for the U.S. during 1880-2000

(Michaels et al., 2012), as well as for accounting for within-country variation in nightlight

intensity on a global scale (Henderson et al., 2018).

Finally, a third branch of related literature is on transportation infrastructure and hin-

terland development. Existing empirical work shows mixed evidence on the effect of con-

struction of transportation infrastructure on the core–periphery patterns. Baum-Snow et

al. (2017) provide evidence that roads and railroads resulted in the decentralization of Chi-

nese cities, the degree of which depends on the configuration of the transportation networks.

Banerjee et al. (2020) find that for an average Chinese county, proximity to a highway or

railroad is beneficial. However, some argue that improved transportation infrastructure may

hurt the growth of the hinterland, leading to reductions in economic growth or losses of

population in peripheral counties (Faber, 2014; Qin, 2017; Baum-Snow et al., 2020; Asher

and Novosad, 2020). We complement this literature by providing evidence that the effect

of transportation infrastructure on the local economy depends crucially on local employ-

ment share in agriculture—a finding highly consistent with Asher and Novosad (2020) in the

context of India. Thus, our work helps reconcile the mixed evidence found in this literature.
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The rest of the paper is organized as follows. Section 2 describes the data and summary

statistics. In Section 3, we introduce the empirical model and report the corresponding

results. Section 4 discusses the mechanisms behind the effect of a nearby big city. In Section

5, we discuss the welfare implications of the urban growth shadow effect. Finally, Section 6

concludes.

2 Data and Descriptive Statistics

2.1 Data and Measures

In this study, we use counties, prefectural city districts, or prefectural city cores as the

basic units of the analysis. In China, each prefectural city consists of two parts: a municipal

city core and the peripheral counties. Each municipal city core, in turn, usually consists

of several or dozens of city districts. Each county or city core can be viewed as an inte-

grated labor market, and therefore, they are the natural units of the regression analysis.

Municipal city cores may have expanded their geographic areas, merged surrounding admin-

istrative counties, and formed new city cores. The merged counties are usually reclassified

as city districts. For these cases, we treat prefectural city cores within the 1990 administra-

tive boundaries as the units of the regressions, and we treat every surrounding county/city

district that was later being merged as a separate regression unit. In addition, the admin-

istrative boundaries of counties and city districts have changed over time. To unify these

administrative boundaries, we refer to the Administrative Division Manual of the People’s

Republic of China from 1990 to 2020.

We use growth of the resident population as the outcome variable to examine the effect of

proximity to a big city on neighboring counties. Data on population of each county come from

the China Population Census in 1990, 2000, 2010, and 2020. Another main outcome variable

is GDP per capita at the county level. We collect the GDP data from the China Statistical

Yearbooks (County-Level) in 2001, 2011, and 2021. The GDP data of the prefectural city

cores come from the China Urban Statistical Yearbook of the corresponding years.4 Because

the 1990s was a critical period during which China transitioned from a planned economy to

a market economy and a major price reform occurred during this period, the GDP data in

the early 1990s are missing. Therefore, our GDP data cover 2000–2020.

We define big cities as the 40 largest prefectural city cores at the beginning of each

period (i.e., 1990, 2000, and 2010). As a robustness check, we also define big cities as the

20 largest prefectural city cores. The key explanatory variables in this paper are a set of

4 For prefectural city cores or counties with missing GDP data, we complement the data with the
statistical yearbooks of the corresponding provinces (which provide county-level information).
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dummy variables indicating whether a county is close to a large city: {I1−50
l , I50−100

l , I100−150
l ,

I150−200
l , I200−250

l ,. . . . . . }, where Ix−y
l equals 1 if the nearest big city to city l is between x

and y km; otherwise, it takes the value of 0. We omit the distance category of ⩾ 250 km,

which means that every distance dummy measures the population growth rate in this area

relative to the areas 250 km and farther away from the nearest big city.

In addition to the distance-to-a-big-city dummy variables, we choose two county char-

acteristics, access to transportation networks, and agricultural employment share, to ex-

plain the growth of cities. To measure access to transportation networks, we construct two

dummy variables indicating whether a county was connected to high-grade highways(gao

dengji gonglu) and railways at the beginning of each ten-year period, respectively. We use

the GIS data of the highways and railways from Baum-Snow et al. (2017) to construct these

two variables, which, in turn, are digitized from the road network maps in 1990, 1999, and

2010. Since the information on grades is missing in the 1990 road network maps, we use road

density of all roads as an alternative measure for 1990. Data on agricultural employment

share come from China Population Census in 1990, 2000, and 2010.

To investigate the mechanisms, we need information on the population flows between

counties. Such information is rare in a developing country context (Bryan and Morten, 2019).

Fortunately, the Chinese census data contain such information. Specifically, the Chinese

Population (Mini) Census Microdata in 2000, 2010, and 2015 record each individual’s hukou

county (place of hukou registration) and current residence county, which allow us to construct

county-to-county migration flows5.

Finally, as a control variable, we define a dummy variable indicating whether a county

is resource-based according to the definition of the National Sustainable Development Plan

for Resource-Based Cities (2013–2020).

2.2 Summary Statistics

Distribution of the Big Cities. Table A1 in the appendix shows the 40 largest cities

and their ranks in each decade. The lists of big cities in 1990 and 2000 are almost the

same, and the population rankings of these cities are relatively stable. Figure 1 shows the

population growth rate in the three periods in our study. It also plots the distribution of

the 40 biggest cities in the beginning of each decade and the 150-km buffer zones around

each big city. In the 1990s, we see substantial population growth both in the inland areas

and in the coastal areas, as well as in the buffer zones around the big cities. In contrast, in

the 2010s, most of the areas in China saw negative population growth, and the growth was

5 The 1990 census microdata did not record the migration origin information at the county level, and
the 2020 census microdata have not been released yet.
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mainly concentrated in the areas proximate to a big city and the southeastern coastal areas.

Also, compared with the previous two decades, in the 2010s, we see that large cities were

significantly more concentrated in the eastern region.

Figure 1: Population Growth Rate from 1990–2020

(a) 1990–2000 (b) 2000–2010

(c) 2010–2020

Notes: Figure 1 plots the population growth rate during the three periods in our study. It also shows the
distribution of the 40 biggest cities in the beginning of each decade and the 150 km buffer zones around each
big city, which exhibits how the population growth rates of counties near big cities evolved.

Distance to the Big Cities. There are 2,234 county-level observations (excluding big

cities) in the sample during 1990–2020.6 In 1990, the average distance between a county and

its nearest large city was 285.61 km, and slightly more than 50% of the counties have a big

6 For 2010–2020, because some counties have not updated the population data of the latest census, the
sample size is slightly smaller compared with the previous two periods.
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city neighbor within 165.71 km. The distribution of the distances to the big cities in 2000

and 2010 are similar.

Summary Statistics of the Key Variables. According to the definition of distance

ranges above, the sample is divided into seven groups, specifically, big cities, 1–50 km, 50–100

km, 100–150 km, 150–200 km, 200–250 km, and 250+ km (locations that have no large city

within 250 km) away from the nearest big city. Table 1 reports the average of the ten-year

population growth rate in each distance group, with the distance group of 250+ km used

as the comparison group. The population growth rate of big cities is fastest among all

seven groups in all three periods, reaching 30% during the 1990s and 2000s, and it slows

down to 13.2% during the 2010s. This pattern confirms the visual patterns in Figure 1.

In different periods, there are significant differences in the population growth rate across

groups. Between 1990 and 2000, the average ten-year population growth rate of the counties

located 50–250 km away from a big city is significantly lower (ranging from 2.4% to 5.4%)

than the average growth rate of the counties located 250 km and farther away from a big

city. Between 2000 and 2010, the average ten-year population growth rate of the counties

located within 50 km of a big city is 3.8% significantly higher than that of the counties

located 250 km and farther away from a big city. In contrast, the average growth rate of

the counties in the 50–250 km distance bands are 3.8% to 5.2% significantly lower than the

comparison group. From 2010 to 2020, different from the previous two decades, the average

population growth rate in most distance bands is negative, except for the distance group

1–50 km, which shows a significantly higher (14.5%) population growth rate compared to

the control group. Meanwhile, the distance group of 150–200km grew by 2.6% more slowly

than the comparison group.

Table 1: Population Growth in Different Distance Bins

Big Cities 1–50km 50–100 km 100–150 km 150–200 km 200–250 km 250 km+

1990–2000

10-year growth rate 0.309 0.088 0.073 0.072 0.043 0.045 0.097

Difference 0.212*** -0.009 -0.024** -0.026** -0.054*** -0.052***

Observations 40 131 413 444 336 272 638

2000–2010

10-year growth rate 0.304 0.104 0.028 0.021 0.014 0.018 0.066

Difference 0.238*** 0.038** -0.038*** -0.045*** -0.052*** -0.047***

Observations 40 125 407 453 358 289 602

2010–2020

10-year growth rate 0.132 0.108 -0.025 -0.051 -0.063 -0.056 -0.037

Difference 0.169*** 0.145*** 0.012 -0.014 -0.026* -0.019

Observations 40 123 393 440 358 280 520

Notes: Our sample primarily focuses on two geographic units: constant boundary 1990 core cities and the surrounding counties. We divide locations

into seven distance bins according to their distance to the nearest big city (regard the big city itself as 0 km) and report average 10-year population

growth rate in each bin. We compare the population growth rate of locations in each distance to that of the locations do not have a big city within

250 km and report the difference as well as the significance of the t-test. *** p < 0.01, ** p < 0.05, * p < 0.1.
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In summary, the descriptive statistics show that the big cities grew much faster than the

rest of the country, and within an intermediate distance range to a big city, the counties

grew significantly more slowly than counties far away from a big city.

3 Econometric Specification and Baseline Results

3.1 Baseline Specification and Results

We use the econometric specification below to estimate the effect of proximity to a big

city on the growth of surrounding counties:

gl = βIl+γlnLl + δX l + εl, (1)

where gl represents the ten-year population growth rate of county l, Il ≡{I1−50
l , I50−100

l ,

I100−150
l , I150−200

l , I200−250
l , I250+l } is a set of dummy variables indicating whether county l ’s

nearest big city is within the respective distance range (km). Therefore, only one dummy

will take a value of 1, and the rest will take a value of 0. The coefficients ’s reflect the effect

of being in the corresponding distance band of a big city on growth relative to the control

group (distance band 250 km+). We control for the logarithm of the population size of

county l at the beginning of the period, lnLl. We also control for the longitude and latitude

of the centroid of each county, a dummy indicating whether the county is resource-based, and

three region dummies (eastern region, central region, and northeastern region). All standard

errors are clustered at the prefecture level.

Table 2 reports the estimation results of equation 1. The first question we examine is

which distance group is most suitable to serve as the control group. To answer this question,

in columns (1)–(3), we first add distance-band dummies for every 50 km up to 300 km to

a big city, and we use the 300+ km group as the omitted/control group. Compared to the

300+ km distance group, we see that the counties located between 150 and 200 km and

those located between 200 and 250 km all show significantly slower population growth rates

across the three periods. In contrast, the counties located between 250 km and 300 km of a

big city do not show a significantly different population growth rate compared to the 300+

km group in any of the three periods. Therefore, we merge the 250–300 km group with the

300+ km group and use the merged group as the benchmark. Moreover, we find that the

growth patterns for the counties located between 150 and 200 km and those located between

200 and 250 km are similar, so as for the counties located between 50 and 100 km and those

located between 100 and 150 km. For clarity without loss of information, we merge the
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50–100 km county group with the 100–150 km group and merge the 150–200 km group with

the 200–250 km group in the benchmark regressions.

Table 2: Population Growth and the Presence of a Big City

(1) (2) (3) (4) (5) (6)
1990–2000 2000–2010 2010–2020 1990–2000 2000–2010 2010–2020

1–50km 0.022 0.034 0.090*** 1–50km 0.025 0.038 0.102***
(0.022) (0.032) (0.029) (0.021) (0.031) (0.027)

50–100km 0.004 -0.036** -0.016 50–150km 0.005 -0.035*** -0.013
(0.014) (0.017) (0.020) (0.011) (0.013) (0.016)

100–150km -0.001 -0.042** -0.035* 150–250km -0.029** -0.035*** -0.033**
(0.014) (0.017) (0.018) (0.011) (0.012) (0.014)

150–200km -0.032** -0.043*** -0.045**
(0.014) (0.016) (0.018)

200–250km -0.031** -0.036** -0.047***
(0.015) (0.016) (0.017)

250–300km -0.008 -0.010 -0.032
(0.023) (0.019) (0.027)

Observations 2,234 2,234 2,114 Observations 2,234 2,234 2,114
R-squared 0.049 0.071 0.210 R-squared 0.049 0.071 0.207

Notes: Each column presents the result from a regression of average ten-year population growth of locations exclusive of the
40 big cities over the specified period on categorical indicators if the nearest big city is within the specified distance bin. All
regressions include a constant and the control variables described in the text. Standard errors are clustered at the prefecture
level. *** p < 0.01, ** p < 0.05, * p < 0.1.

The estimation results under this new specification are presented in columns (4)–(6),

which are one of the central results of this paper. Similar to columns (1)–(3), across the

three periods, the counties located between 150 km and 250 km away from a big city had

significantly slower ten-year population growth rates relative to the control group, ranging

from 2.9% to 3.5%. The 2000–2010 period (column (5)) shows the strongest urban shadow

effect as well as the broadest geographic scope—the counties located between the 50–250 km

distance bands, on average, had a significantly lower population growth rate. Coincidently,

this is also the decade with the most rapid structural transformation. During the 2010–2020

period (column (6)), we see that the ten-year population growth rate of the counties located

within 50 km of a big city is 10.2% faster than the control counties, and such an effect is

statistically significant, which suggests that the big cities had a net spillover effect on the

surrounding counties. Such a positive spillover effect dies out as we move farther away from

the big cities. When we reach the 150–250 km rings, the effect of being proximate to a

big city turns significantly negative, suggesting that the urban shadow effect dominates the

spillover effect in this distance range. Notice that counties located between 50–150 km did

not suffer from the urban growth shadow effect in this period. The reasons for this change

will be discussed in Section 4.

We conduct a series of robustness checks of the above core results. First of all, in Figure

1, we see that some provinces, such as Xinjiang and Tibet, contain no big city according to
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our definition. Most of the counties in these places are more than 250 km away from any of

the 40 biggest cities and thus are included in the comparison group. To alleviate the concern

that such counties might not be a good benchmark for comparison, we conduct a robustness

exercise omitting counties located more than 500 km away from a big city from the analysis.

The results are similar and are shown in Table A2 in the appendix.

Secondly, while the above regression analysis defines big cities as the 40 biggest cities in

the initial year in China, we also define big cities as the 20 biggest cities in the initial year

as a robustness check. We report the results in Table A3 in the appendix, and the results

are also similar.

Thirdly, we examine whether the urban growth effect varies across the three largest

urban agglomerations: Beijing, Shanghai, and Guangzhou-Shenzhen. We report the results

in columns (1), (3), and (5) in Table A4 in the Appendix. Several facts deserve mention.

First, across all three agglomerations and all three periods, there is a very large spillover

effect in the 1–50 km distance band, ranging from 9.5% (Shanghai, 2010s) to 55% (Beijing,

2000s). Second, there is also large heterogeneity in the growth effect across these three

urban agglomerations in the 50–250 km distance range. Consistent with anecdotal evidence,

we find Shanghai casted a very strong and far-reaching positive effect on the growth of its

peripheral counties, while Beijing casted a much smaller effect on its peripheral counties than

Shanghai did. Meanwhile, the Guangzhou-Shenzhen twin-cities imposed a positive effect on

surrounding counties in the 1–100 km range in all three periods, but they imposed a large

and significantly negative effect on the growth of the counties in the 100–250 km distance

range during the 1990s and 2010s.

4 Mechanisms of the Urban Growth Shadow Effect

In Section 3, we established that the urban growth shadow effect exists for an average

county located between 150 km and 250 km away from a big city in all three periods and also

between 50 km and 150 km away from a big city in the 2000s. However, while some counties

have suffered from the presence of a nearby big city, others have not. This leads to the

question of whether there is a county characteristic that could explain this heterogeneity,

and could absorb the negative effect of the proximity-to-a-big-city dummies (50–150 km,

150–250 km) when being included in the baseline regression. In Subsection 4.1, we test

whether access to transportation networks and agricultural employment share can explain

the existence and heterogeneity of the urban growth shadow effect. Then, after identifying

agricultural employment share as the key county characteristic, in Subsection 4.2, we propose

an explanation and provide evidence consistent with this interpretation.
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4.1 Local Characteristics and the Urban Shadow Effect

To examine whether access to transportation networks and agricultural employment share

can explain the urban shadow effect, we include the corresponding county-level measure

as well as the distance-to-a-big-city dummies in one regression and examine whether the

inclusion of any characteristic absorbs the negative effect of distance dummies.

We report the results in Table 3. Panel A reports the results for the 1990s. In Panel

A, columns (1)–(3), we add initial agricultural employment share, access to highways, and

access to railways one by one into the regressions. For ease of comparison, we take the

estimates in column (4) in Table 2 here as column (0) in Table 3, which shows that the

population growth rate of the counties located between 150 and 250 km away from a big city

is 2.9% lower than the comparison counties. However, once we control for initial agricultural

employment share of each county, we do not find a significant effect of distance to a big city on

population growth. The coefficient on initial agricultural employment share is –0.381, which

significantly differs from zero at the 1% level, suggesting that counties with a 10% higher

initial agricultural employment share are associated with a 3.81-percentage-point (0.1*0.381)

lower ten-year population growth rate. This is probably because agriculture-based economies

have lower productivity growth rates, which translates into slower population growth. Notice

that from column (0) to column (1), with the addition of one single control variable, the

R-squared increases from 0.049 to 0.224, indicating the high explanatory power of initial

agricultural employment share in predicting subsequent population growth. Columns (2)–(3)

add access to highways and access to railways one by one independently into the regressions.

All the coefficients on these two control variables are significantly positive at the 1% level,

suggesting that counties with better initial access to highways or railways are associated

with faster population growth. However, neither access to highways nor access to railways

absorbs the negative effect of the distance dummies.

Panels B and C report the results for the 2000s and the 2010s, respectively. The structure

of these two panels is similar to Panel A. We find similar results. First, adding the initial

agricultural employment share dummy absorbs the urban shadow effect. Take the results

in the 2000s as an example. In column (0), which is taken from column (5) in Table 2, we

see a strongly negative effect of proximity to a big city in distance bands between 50–250

km. The negative coefficients for dummies 50–150 km and 150–250 km are both -0.035

and statistically significant. However, once we control for initial agricultural employment,

both these two distance dummies become smaller—ranging from –0.013 to –0.015—and

statistically insignificant. Second, again, in both panels, adding access to highways and

access to railways one by one independently into the regressions does not absorb the urban

shadow effect.
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Table 3: Mechanisms for the Urban Shadow Effects

Panel A 1990–2000 Period

(0) (1) (2) (3)

Baseline Agri share Highways Railways

1–50km 0.025 0.028 0.018 0.011

(0.021) (0.018) (0.021) (0.021)

50–150km 0.005 0.024** -0.008 0.002

(0.011) (0.011) (0.011) (0.011)

150–250km -0.029** -0.010 -0.036*** -0.027**

(0.011) (0.012) (0.012) (0.011)

Agri share -0.381***

(0.035)

Access to highways 0.001***

(0.000)

Access to railways 0.047***

(0.007)

Observations 2,234 2,234 2,230 2,234

R-squared 0.049 0.224 0.072 0.065

Panel B 2000–2010 Period

(0) (1) (2) (3)

Baseline Agri share Highways Railways

1–50km 0.038 0.020 0.010 0.028

(0.031) (0.025) (0.032) (0.031)

50–150km -0.035*** -0.015 -0.041*** -0.039***

(0.013) (0.013) (0.013) (0.013)

150–250km -0.035*** -0.013 -0.035*** -0.039***

(0.012) (0.012) (0.012) (0.012)

Agri share -0.391***

(0.034)

Access to highways 0.068***

(0.013)

Access to railways 0.048***

(0.008)

Observations 2,234 2,234 2,234 2,234

R-squared 0.071 0.260 0.089 0.086
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Panel C 2010–2020 Period

(0) (1) (2) (3) (4)

Baseline Agri share Highways Railways High-speed

1–50km 0.102*** 0.072*** 0.095*** 0.099*** 0.093***

(0.027) (0.025) (0.027) (0.027) (0.027)

50–150km -0.013 -0.008 -0.016 -0.014 -0.015

(0.016) (0.015) (0.016) (0.016) (0.016)

150–250km -0.033** -0.022 -0.034** -0.034** -0.032**

(0.014) (0.013) (0.014) (0.014) (0.014)

Agri share -0.247***

(0.028)

Access to highways 0.030***

(0.008)

Access to railways 0.030***

(0.010)

High-speed dummy 0.057***

(0.011)

Observations 2,114 2,114 2,114 2,114 2,114

R-squared 0.207 0.272 0.212 0.212 0.225

Notes: We include initial county characteristics in the baseline regression and

examine which characteristic absorbs the negative effect of distance. Specifi-

cally, we consider initial agricultural employment share, access to highways, and

access to railways. Since the information on grades is missing in the 1990 road

network maps, we use road density of all roads as an alternative measure for

the variable access to highways in year 1990. In 2010–2020, we also consider a

high-speed railway dummy. All regressions include a constant and control for

initial population, additional geographic control variables, and region dummies

as described in the text. Standard errors are clustered at the prefecture level.

The strong explanatory power of a location’s initial agricultural employment share shown

in Table 3 motivates us to explore whether agricultural employment share can also explain

the heterogeneity across the three largest urban agglomerations. To do this, we include

initial agricultural employment share as an additional control to columns (1), (3), and (5)

in Table A4 and report the corresponding results with this control in columns (2), (4), and

(6) respectively. In short, while we find substantial heterogeneity in the urban proximity

effect across the three urban agglomerations, once we control for each periphery county’s

own agricultural employment share, a large fraction of this heterogeneity disappears. In

particular, we find that while Shanghai had a much stronger urban spillover effect on the

peripheral counties compared to the effect imposed by Beijing on its peripheral counties,

such a difference can be largely explained by the fact that Beijing is surrounded by more

agricultural-based counties.
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To summarize, Table 3 shows that across the three periods, the initial agricultural em-

ployment share is the county characteristic that well explains the urban shadow effect, while

access to transportation networks does not. Tables A4 further shows that the initial agricul-

tural employment share can also explain the heterogeneous effects across the three largest

urban agglomerations. There are two possible reasons for why the inclusion of the initial

agricultural employment share absorbs the negative effect of proximity to a big city (the

largest and most significant being in the 150–250 km distance range). The first reason is

that counties located in this distance range are more agricultural-based compared to counties

located in the other areas, so they grow more slowly due to their own characteristic, which

is independent of the effect of a nearby big city. The second reason is that, in addition

to the first mechanism, compared to periphery non-agricultural-based counties, periphery

agricultural-based counties are more strongly negatively affected by the presence of a nearby

big city. Therefore, the counties located 150–250 km away from a big city grow more slowly

due to a combination of their own characteristics and the urban growth shadow effect. In

the next subsection, we show in detail that the second interpretation is more consistent with

the data.

4.2 The Strong Explanatory Power of Agricultural Employment

Share

In this subsection, we explore why initial agricultural employment share has so large

power to explain the existence of the urban growth shadow effect, as shown in Table 3. This

result is explained by combining following three facts: First, as we show in column (1) in

Table 3, a higher value of initial agricultural employment share is associated with a signifi-

cantly lower population growth rate in all three periods. Second, the spatial distribution of

agricultural activity exhibits a pattern—which is reported in Table 4—such that the coun-

ties located close to a big city had a lower agricultural employment share, while counties

located farther away had a higher agricultural share across 1990, 2000, and 2010. In the

years 2000 and 2010, when structural transformation process had reached a later stage, the

contrast in agricultural share between the 1–50km distance band and the other distance

bands was particularly stark: the gap was 13 and 26.4 percentage-points between the 1–50

km distance band and the 250+km distance band in 2000 and 2010, respectively, whereas

this gap was substantially smaller between the distance bands beyond 50 km (which ranges

from 1.4 percentage points to 9.6 percentage points in 2000 and 2010). Therefore, the share

of agricultural activity decreased at a nonlinear speed (initially fast and then slowly) as one

moved away from a big city in 2000 and 2010.
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To account for the fact that only counties located at a medium distance to a big city

(particularly, 150–250km) suffered a loss in population growth rate, as a third step, we need

to further explore whether the agricultural share exerted different influences on the growth

of the periphery counties in different distance bands to a big city. To do so, we interact the

proximity-to-a-big-city dummies with the initial agricultural employment share and report

the results in columns (1)–(3) in Table 5. The coefficient on agri share indicates the effect

of initial agricultural employment share on population growth for counties located in the

250km+ distance band, and the coefficient on agri share*x-y km captures whether initial

agricultural employment share has had an additional effect in the corresponding distance

band. We find that in general—except for the 2010s between 50 and 250km—the negative

effect of agricultural share on population growth becomes more profound as the distance to

a big city becomes shorter. Alternatively, this result also suggests that for counties located

in the same distance band, say 1–50km, the agricultural-based counties would suffer more

from this proximity than would the non-agricultural-based counties.

Table 4: Spatial Distribution of Agricultural Share and Access to Transportation Networks

Agri share Access to highways Access to railways

Distance Obs Mean Difference Mean Difference Mean Difference

1990

1–50 km 129 0.721 -0.033 45.407 18.346*** 0.713 0.417***
50–150 km 856 0.759 0.004 45.308 18.248*** 0.485 0.189***
150–250 km 607 0.780 0.025** 38.889 11.828*** 0.381 0.084***
250+ km 638 0.755 27.061 0.296

2000

1–50 km 125 0.598 -0.130*** 0.600 0.544*** 0.704 0.342***
50–150 km 860 0.705 -0.023** 0.248 0.191*** 0.592 0.230***
150–250 km 647 0.742 0.014 0.111 0.055*** 0.527 0.165***
250+ km 602 0.728 0.056 0.362

2010

1–50 km 126 0.402 -0.264*** 0.913 0.554*** 0.754 0.309***
50–150 km 850 0.570 -0.096*** 0.721 0.363*** 0.659 0.214***
150–250 km 644 0.629 -0.037*** 0.584 0.226*** 0.618 0.173***
250+ km 614 0.666 0.358 0.445

Notes: We divide locations into four distance bins according to their distance to the nearest big city and
report agricultural share, access to highways (high-grade roads), and access to railways in each bin in
corresponding years. Since the information on grades is missing in the road network maps in 1990, we use
road density of all roads (m/km2) as an alternative measure for the variable access to highways in 1990.
We compare the mean of these two variables of locations in each distance to that of locations do not have
a big city within 250 km. We report the difference as well as the significance of t-test. *** p < 0.01, **
p < 0.05, * p < 0.1.

Taking both the spatial distribution of agricultural activity and the interactive effect of

agricultural share and proximity to a big city together into consideration, we can explain

why only counties located at a medium distance to a big city were negatively affected by

the big city in terms of population growth. This is because counties in this area had a
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relatively high agricultural share, and the negative effect of agricultural share is stronger

compared with counties that are 250 km and further away. In contrast, for counties located

very close to a big city, although the negative effect of agricultural share is the strongest,

agricultural employment activity is very limited there. That is why we do not see any urban

shadow effect for these counties; in fact, for this county group, they exhibited much higher

population growth rates compared to the counties in the 250+km group (row 1, Panel C of

Table 3), suggesting that they may have benefited from the spillovers from the big city.

Table 5: Interactions between the Distance Dummies and the Key Variables

M = Agri share M = Access to highways M = Access to railways

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1990–20002000–20102010–20201990–20002000–20102010–20201990–20002000–20102010–2020

1–50 km 0.111 0.224** 0.095 0.070** 0.050 0.073 0.021 0.039 0.100**

(0.094) (0.093) (0.058) (0.035) (0.036) (0.072) (0.033) (0.047) (0.045)

50–150 km 0.114* 0.134** -0.026 0.005 -0.038*** -0.029 0.010 -0.052*** -0.028

(0.069) (0.060) (0.055) (0.019) (0.013) (0.022) (0.011) (0.018) (0.018)

150–250 km -0.012 0.080 -0.048 -0.040** -0.035*** -0.056*** -0.020 -0.050*** -0.043**

(0.067) (0.056) (0.059) (0.020) (0.012) (0.020) (0.012) (0.017) (0.018)

M -0.324*** -0.252*** -0.265*** 0.001*** 0.102 0.002 0.062*** 0.029 0.014

(0.068) (0.058) (0.072) (0.000) (0.062) (0.024) (0.019) (0.021) (0.023)

1–50 km*M -0.113 -0.309** -0.067 -0.001** -0.095 0.040 -0.022 -0.009 0.003

(0.118) (0.121) (0.091) (0.001) (0.074) (0.072) (0.033) (0.051) (0.048)

50–150 km*M -0.119 -0.206*** 0.030 -0.000 -0.035 0.029 -0.020 0.027 0.025

(0.084) (0.077) (0.077) (0.001) (0.065) (0.027) (0.022) (0.023) (0.024)

150–250 km*M -0.000 -0.128* 0.041 0.000 -0.019 0.045* -0.019 0.026 0.018

(0.081) (0.072) (0.083) (0.001) (0.066) (0.027) (0.023) (0.024) (0.025)

Observations 2,234 2,234 2,114 2,230 2,234 2,114 2,234 2,234 2,114

R-squared 0.229 0.273 0.273 0.074 0.092 0.214 0.066 0.088 0.213

Notes: We include interaction terms between the distance dummies and agricultural share/access to trans-

portation networks in the baseline regression. Since the information on grades is missing in the road network

maps in 1990, we use road density of all roads (m/km2) as an alternative measure for the variable access to

highways in 1990. All regressions include a constant and control for initial population, additional geographic

control variables, and region dummies as described in the text. Standard errors are clustered at the prefecture

level.

As a parallel test, we also examine whether transportation connectivity exhibited some

spatial patterns and whether transportation connectivity had differential effects on county

population growth in different distance bands to a big city. From the right four columns in

Table 4, we see that counties located closer to a big city were more likely to be connected to

highways or railways. In columns (4)–(9) in Table 5, we interact the access to transportation

networks dummy with proximity-to-a-big-city dummies and report the results. We find that

the effect of access to transportation networks on population growth does not vary with the
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distance to a big city. Therefore, controlling for access to transportation networks does not

help explain why the urban growth shadow effect existed only in medium distances to a big

city (negative coefficient on the 150–250km distance dummy).

The above findings lead to the following natural question: why does initial agricultural

employment share impose a particularly negative effect on a location’s growth when this

location is close to big cities? An obvious answer is migration: given the much lower value-

added per capita of the agricultural sector compared to the non-agricultural sector, the

opportunity costs of migrating out of the agriculture-based counties are probably also lower.

Therefore, such counties are more likely to lose population in the presence of nearby big cities,

especially during a period of structural transformation. We provide evidence to support this

conjecture, exploiting the county-to-county migration flow information available in the census

microdata.

Specifically, we test whether big cities act as gravitational fields that attract people from

nearby areas and whether such gravitational forces are stronger for people coming from

agricultural-based counties. To do so, we estimate a gravity equation of migration flows

between counties using the census microdata in the years 2000, 2010, and 2015:7

ln migrationod =α0+α1 ln popo+ α2 ln popd + α3 ln distanceod + α4 ln agrishareo+

α5 ln agrishared + α6 proximityo + α7 proximityo ∗ ln agrishareo + εod,

(2)

where ln migrationod is the logarithm of the number of migrants from origin county o

to destination county d. The explanatory variable, ln popo, is the number of residents in

origin county o, and ln popd is the number of residents in destination county d. Variable

ln distanceod is the Euclidean distance between the centroid of origin county o and the cen-

troid of destination county d. In addition to these common explanatory variables in gravity

equations, we also include origin county o and destination county d’s initial agricultural

employment shares in the regressions. While the destination population, popd, captures the

idea that the magnitude of the gravity force increases with the destination city size, we

further add dummies indicating proximity between origin county and a big city destination,

x − y kmo, to capture the idea that the gravity force between origin counties and the big

city in close proximity (between x and y km) could be particularly strong. Additionally, we

add the interaction term x − y kmo*agrishareo, the coefficient on which indicates whether

big cities particularly attract migrants coming from nearby agricultural-based counties.

7 We only keep county pairs that have non-zero migration flow in the sample, and therefore the sample
size is 74439, 97039, and 40664, respectively.
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Table 6: Gravity Equation of Migration Flows

Log of Origin-Destination Pair Migration Flows

2000 2010 2015

(1) (2) (3) (4) (5) (6)

Log of Populationo 0.124*** 0.146*** 0.145*** 0.168*** 0.177*** 0.201***

(0.004) (0.004) (0.004) (0.004) (0.007) (0.007)

Log of Populationd 0.073*** 0.077*** 0.125*** 0.130*** 0.042*** 0.047***

(0.004) (0.004) (0.004) (0.004) (0.005) (0.005)

Log of Distanceod -0.220*** -0.228*** -0.292*** -0.302*** -0.236*** -0.245***

(0.003) (0.003) (0.003) (0.003) (0.004) (0.004)

Log of Agrishareo 0.089*** -0.013 0.147*** 0.028*** 0.103*** 0.036***

(0.005) (0.009) (0.005) (0.009) (0.005) (0.012)

Log of Agrishared -0.261*** -0.262*** -0.254*** -0.255*** -0.147*** -0.149***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

1–50 kmo -0.107*** -0.149*** -0.186***

(0.017) (0.017) (0.031)

50-150 kmo -0.054*** -0.047*** -0.069***

(0.010) (0.010) (0.015)

150-250 kmo 0.029*** 0.048*** -0.008

(0.011) (0.010) (0.016)

Log of Agrishareo ∗ 1–50 kmo 0.202*** 0.182*** 0.011

(0.026) (0.018) (0.020)

Log of Agrishareo ∗ 50–150 kmo 0.163*** 0.158*** 0.095***

(0.012) (0.013) (0.015)

Log of Agrishareo ∗ 150–250 kmo 0.158*** 0.149*** 0.081***

(0.015) (0.013) (0.016)

Observations 74,439 74,439 97,039 97,039 40,664 40,664

R-squared 0.149 0.156 0.181 0.187 0.139 0.144

Notes: Regressions are based on equation 2. Each column reports the results from a regression of origin-

destination pair migration flow on population of origin, population of destination and distance between origin

and destination. Each observation is a county pair. We keep only county pairs that have non-zero migration

flows for each year. In columns (1), (3), and (5), we control for both the initial agricultural employment

share of the origin and the destination. Compared with columns (1), (3), and (5), in columns (2), (4), and

(6), we further control for categorical indicators for whether the nearest big city of origin county is within

the specified distance bin, and for the interaction terms between the origin county’s categorical indicators

and the origin’s initial agricultural employment share. The subscript o and d in the variable names stand for

the origin county and the destination county respectively. For example, the variable 1 − 50 kmo indicates

whether the origin county is located within 1–50 km of a big city.

Table 6 reports the estimation results of the gravity equation. We focus on the results

for the year 2010 (columns (3) and (4)) because the census data in 2010 records individu-

als’ migration histories during the 2000s—the period in which we find the strongest urban

growth shadow effect. Column (3) includes only the most basic explanatory variables, while

column (4) includes additional variables to test our proposed mechanism. In both columns,

we find that bilateral migration flows are higher when the origin county population size is

larger, the destination county population size is larger, or the migration distance is shorter.

The significantly positive coefficient on ln agrishareo in column (3) suggests that a higher
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agricultural employment share in the origin county is associated with a larger number of

out-migrants. Crucially, column (4) shows that agricultural employment share of the origin

county interacts positively with proximity-to-a-big-city dummies from 1 to 250 km, suggest-

ing that agricultural-based counties with a nearby big city are particularly prone to send

out migrants. We also estimate the above gravity equation using the 2000 and 2015 census

micro data and find similar results, which show that our proposed mechanism holds across

different periods.

4.3 The Power of Agricultural Share in Explaining the Effect of

Transportation Access

In subsections 4.1 and 4.2, we showed that agricultural employment share is crucial to

explain the existence of the urban shadow effect as well as the heterogeneity of the growth

shadow effect across counties. In this subsection, we show that agricultural employment

share is also crucial to explain the heterogeneous effects of access to transportation networks

on population growth. To do so, we add the interaction term between locations’ initial

agricultural employment share and access to highways/access to railways into the baseline

regressions. We conduct this exercise also because if the rural–urban migration mechanism

were at play, we would observe agricultural-based counties that were well-connected to a big

city by transportation infrastructure were more likely to lose population.

Table 7 reports the results of this exercise. We find that both the interaction term

between the initial agricultural employment share and access to highways and the interaction

term between the agricultural share and access to railways are significantly negative during

the periods 2000–2010 and 2010–2020, suggesting that places that were both agricultural-

based and well-connected to transportation networks grew significantly more slowly. This

is likely because better transportation infrastructure facilitates people moving out of their

hometowns to seek job opportunities in cities, and such an effect is particularly strong

for workers originating from agriculture-dominant counties. This interpretation echoes the

finding by Asher and Novosad (2020), who provide evidence that the main effect of new

feeder roads is to facilitate the movement of workers out of agriculture in the context of

India.

Two additional points are worth noting from the results in Table 7. First, the interac-

tive effect between agricultural share and access to transportation networks is economically

very large. Taken column (3) in Table 7 as an example, for a county that had no agricul-

ture at all, being connected to highways predicts a 19.9-percentage-points higher population

growth rate over 2000–2010, compared to a county that had no agriculture but was not con-
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nected to highways; however, for a county that completely specialized in agriculture (100%

agricultural share), being connected to highways predicts a 6.1-percentage-points ((0.260-

0.199)*100) lower population growth rate during the same period, compared to a county

that completely specialized in agriculture but was not connected to highways. We find

that for counties whose agricultural employment share exceeds 76.5%, being connected to

highways predicts lower ten-year population growth (0.199/0.26≈0.765). This negative in-

teractive effect is also sizable during 2010–2020. Second, we find that the negative interactive

effect between agricultural share and access to transportation networks is strongest during

2000–2010, which is a period with rapid transportation infrastructure improvements,8 rapid

structural transformation, and massive rural to urban migration.

Table 7: The Interactive Effect of Agricultural Share and Transportation Infrastructure
on Population Growth

1990–2000 2000–2010 2010–2020

(1) (2) (3) (4) (5) (6)

Highways Railways Highways Railways Highways Railways

1–50 km 0.028 0.025 0.008 0.018 0.069*** 0.075***

(0.018) (0.018) (0.026) (0.026) (0.025) (0.026)

50–150 km 0.019 0.024** -0.015 -0.014 -0.007 -0.006

(0.012) (0.012) (0.013) (0.013) (0.015) (0.015)

150–250 km -0.014 -0.010 -0.014 -0.013 -0.021 -0.020

(0.012) (0.012) (0.011) (0.012) (0.013) (0.013)

Access to highways/railways 0.000 0.010 0.199*** 0.124*** 0.079* 0.065**

(0.001) (0.053) (0.050) (0.045) (0.044) (0.027)

Agri share -0.366*** -0.374*** -0.304*** -0.286*** -0.166*** -0.180***

(0.057) (0.054) (0.033) (0.047) (0.059) (0.036)

Access to highways/railways -0.000 -0.002 -0.260*** -0.146** -0.105* -0.085**

*Agri share (0.001) (0.065) (0.067) (0.057) (0.062) (0.040)

Observations 2,230 2,234 2,234 2,234 2,114 2,114

R-squared 0.228 0.225 0.282 0.268 0.275 0.274

Notes: We include interaction terms between initial agricultural employment share and transportation vari-

ables.Since the information on grades is missing in the road network maps in 1990, we use road density of all

roads (m/km2) as an alternative measure for the variable access to highways (high-grade roads) in 1990. All

regressions include a constant and control for initial population, additional geographic control variables, and

region dummies as described in the text. Standard errors are clustered at the prefecture level.

So far, we have established that the agricultural employment share can explain why

the urban growth shadow effect exists and the heterogeneity of the shadow effect across

8 The mileage of expressways increased from 11,600 kilometers in 2000 to 74,100 kilometers in 2010.
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counties, while access to transportation networks explains neither. Moreover, we also show

that the agricultural employment share explains the heterogeneity of the effect of access to

transportation networks. Therefore, we conclude that agricultural employment share plays a

more fundamental role in determining economic geography when structural transformation

is still ongoing.

4.4 Robustness

In the analysis above, though we measured the key explanatory variables—initial agri-

cultural employment share and access to transportation networks—at the beginning of each

period, these two variables are endogenous. Although identifying the causal effect of each

of these two variables on city growth is not the main goal of this paper, we aim to find a

key county characteristic that could both explain the existence and the heterogeneity of the

urban growth shadow effect. Therefore, we want to rule out the possibility that our find-

ings are driven by some omitted county characteristics that are correlated with agricultural

share and/or transportation infrastructure and, at the same time, affect local population

growth. To address this concern, we construct instrumental variables for initial agricultural

employment share and access to transportation networks and test whether our core results

are robust to these instruments.

For initial agricultural employment, we use geographical characteristics related to agri-

culture as instruments. To be specific, we use an index of land suitability—the caloric

suitability indices (Galor and Özak, 2016)—together with the average July temperature as

instruments for initial agricultural employment share. The caloric suitability indices (CSI)

capture the variation in potential crop yield across locations as measured by calories per

hectare per year. We first aggregate the pixel-level, time-invariant suitability index for each

crop to the Chinese county-crop level. Then, for each county, we average the suitability index

across crops to derive a county-level, time-invariable suitability index, and use this index as

an instrument for each county’s agricultural employment share in each initial year (1990,

2000, and 2010). A large literature in natural sciences and social sciences has shown that

temperature is a crucial factor that affects agricultural outputs (Deschênes and Greenstone,

2007; Lobell et al., 2011; Schlenker and Lobell, 2010; Caruso et al., 2016; Blakeslee and

Fishman, 2018). Therefore, in addition to CSI, we also use July temperature as an instru-

ment for initial agricultural employment.9 The idea is these agriculture-related geographical

conditions and climate conditions to a large extent determine the size of today’s agricultural

sector; however, these conditions affect today’s population growth only through their impact

9 Specifically, we determine the average temperature in July using daily temperature data in July between
1960 and 2019 from the Climate Research Unit.
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on agricultural development. While this is a strong identification assumption, we believe

that with appropriate caveats, the two-stage least squares results are still informative.

We report these IV estimation results and compare them with the OLS results in Panel

A of Table A5. Columns (1)–(3) report the results for the 1990s, columns (4)–(6) report

the results for the 2000s, and columns (7)–(9) report the results for the 2010s. Columns

(1), (4), and (7) report the baseline regression results. Columns (2), (5), and (8) report

the OLS results with agricultural employment share as a control variable, and columns (3),

(6), and (9) report the IV results. Across all three periods, we find that the IV results are

similar to the corresponding OLS results: the coefficients on agricultural employment share

have the same sign and similar magnitudes; moreover, in both IV and OLS results, once we

control for initial agricultural employment share, the magnitudes of the proximity-to-a-big-

city dummies decrease and the statistical significance largely disappears. The robustness of

our core results to the instruments lends further credibility to our interpretation, that is, it

is the size of the agricultural sector that determines whether the urban growth shadow effect

exists.

For the explanatory variables access to highways and access to railways (in the years 1990,

1999, and 2010), we follow Baum-Snow et al. (2017) and use access to railways constructed

before 1962 as the instrument.10 The assumption behind this instrument is that the rail-

roads built before 1962 were constructed according to the dictates of national and provincial

annual and five-year plans, which are unlikely to be driven by today’s local economic con-

ditions, therefore satisfying the validity assumption. They are relevant instruments because

transportation infrastructure is highly durable, so access to transportation networks in the

1960s is highly correlated with the access today.

We report these IV estimation results for access to highways in Panel B of Table A5,

and report the IV results for access to railways in Panel C of Table A5. Again, we find that

the IV results are similar to the OLS results: the coefficients on the level of transportation

infrastructure under OLS are close to those under the IV estimates. Moreover, similar to

OLS, under the IV estimates, the inclusion of the transportation infrastructure controls does

not absorb the negative effect of proximity to a big city.

5 Welfare Implications of the Urban Shadow Effect

Having established that being close to a big city has a negative effect on population

growth at a distance of 150–250 km from the big city during every decade between 1990

10 Since the information on grades is missing in the road network maps in 1962, we use access to railways
in 1962 as an instrument for access to highways (high-grade roads) in year 1999 and 2010. For year 1990,
we use road density in 1962 as an instrument for road density in 1990.
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and 2020, ranging from 2.9% to 3.5% over ten years, we now explore whether there exists

a negative effect of proximity to a big city on the growth rate of GDP per capita, which

is another important economic outcome. As mentioned in the data section, due to data

limitations, we estimate this set of results for the 2000s and 2010s.

Table 8: Comparison between Population Growth and GDP Growth

2000–2010 2010–2020

(1) (2) (3) (4)

Population GDP per capita Population GDP per capita

1–50 km 0.038 0.122** 0.102*** 0.094*

(0.031) (0.061) (0.027) (0.056)

50–150 km -0.035*** 0.028 -0.013 0.037

(0.013) (0.043) (0.016) (0.034)

150–250 km -0.035*** -0.004 -0.033** 0.013

(0.012) (0.037) (0.014) (0.033)

Observations 2,234 2,131 2,114 1,994

R-squared 0.071 0.213 0.207 0.480

Notes: This table compares the baseline results of using ten-year population growth

rate and of using ten-year GDP per capita growth rate as dependent variables in the

specified periods. We regress corresponding dependent variables on categorical indica-

tors if the nearest big city is within the specified distance bin. All regressions include

a constant and control for initial population/GDP per capita, additional geographic

control variables, and region dummies as described in the text. Standard errors are

clustered at the prefecture level.

Table 8 reports the results. Columns (1) and (2) report the results for the 2000s, and

columns (3) and (4) report the results for the 2010s. For ease of comparison, column (1)

here is taken from the population results in column (5) in Table 2, and column (3) here is

taken from the population results in column (6) in Table 2. Columns (2) and (4) report the

GDP per capita results in the corresponding periods. We have two findings. First, similar

to the results using population growth as the outcome variable, we find that being located

within 50 km of a big city has a positive effect on economic growth: the GDP per capita of

the counties in this area grew 12.2% faster over 2000–2010 than the GDP per capita growth

rate of the control counties, and the GDP per capita of the counties in this area grew 9.4%

faster over 2010–2020 than the GDP capita growth rate of the control counties. The effects

are statistically significant at the 5% level and 10% level, respectively. Second, in contrast,

in the more distant areas from the nearest big city (50–250 km), we find no significant effect

of proximity to a big city on the growth rate of GDP per capita. If anything, most of the

coefficients in this distance range are slightly positive. The simultaneous population outflow
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in the peripheral counties and stable relative income growth rates between the core and pe-

ripheral areas are consistent with spatial equilibrium: at every point in time, the population

moves across the space so that homogeneous individuals derive the same utility/real income

in every location. If one place has better economic opportunities than the other places, it

will then attract people to migrate there until the real income gap is zero across the space.

Table 9: The Effect of Proximity to a Big City on the Share of High-Skilled Labor and
Prime-Aged Population in Periphery Counties

High School Share College Share Prime-Aged Population Share

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1990–2000 2000–2010 2010–2020 1990–2000 2000–2010 2010–2020 1990–2000 2000–2010 2010–2020

1–50 km 0.630** 3.645*** 3.886*** 0.065 2.065*** 2.456*** -1.585*** 0.196 2.534***

(0.268) (0.581) (1.185) (0.101) (0.440) (0.682) (0.573) (0.523) (0.547)

50–150 km 0.342 0.703** 0.126 -0.102* -0.115 0.157 -1.789*** -1.362*** -0.490

(0.214) (0.298) (0.415) (0.058) (0.152) (0.240) (0.346) (0.315) (0.383)

150–250 km 0.207 0.229 -0.179 -0.037 -0.288** -0.085 -1.152*** -1.550*** -0.722**

(0.185) (0.237) (0.343) (0.053) (0.132) (0.196) (0.318) (0.314) (0.354)

Observations 2,234 2,234 2,104 2,234 2,234 2,104 2,203 2,213 2,216

R-squared 0.235 0.097 0.074 0.564 0.304 0.259 0.286 0.286 0.324

Notes: This table reports the effect of proximity to a big city on high-skilled labor (defined as high school graduates or

college graduates) and prime-aged population (defined as residents aged 20-44). All regressions include a constant and

control for initial share of high-skilled labor/prime-aged population, additional geographic control variables, and region

dummies as described in the text. Standard errors are clustered at the prefecture level.

The changes in GDP per capita could reflect both changes in income levels and/or changes

in the composition of the workers. Therefore, we also estimate the effect of proximity to a

big city on changes in the share of high-skilled labor (defined as high school graduates or

college graduates) and the prime-aged population (20–44) in total population. In columns

(1) to (6) in Table 9, we find that, in the areas very proximate to a big city (1–50 km),

the share of high-skilled labor increased significantly during 2000–2010 and 2010–2020. As a

county’s distance to the nearby big city increased, the share of college graduates decreased

in the longer distance ranges (column (5) in Table 9). The magnitudes are also sizable: take

row 3, column (5) as an example. The estimated coefficient -0.288 implies that the share of

college-educated population in total population decreased by 0.288 percentage points over

2000–2010 in the 150–250 km distance band compared to the 250+ km distance band. (The

sample mean of the outcome variable was only 2.189 percentage points in 2000.) This

pattern provides suggestive evidence that college-educated population are more and more
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concentrated in the core areas relative to the peripheral areas.11 Meanwhile, in columns

(7)–(9) in Table 9, we find a strong and negative effect of proximity to a big city on the

share of the prime-aged population. In the areas between 50 and 250 km to the nearest

big city, the share of the prime-aged population decreased significantly across almost all the

distance bands and all the periods (except for 50–150 km, 2010–2020), ranging from 0.49 to

1.79 percentage points relative to the control group. This negative effect on the prime-aged

labor share has larger magnitudes during 1990–2010, which is consistent with the observation

that massive young adults moved from the rural to urban areas in China during this period.

This pattern strengthens the urban growth shadow effect: not only in terms of population

size, but also in terms of quality of the labor force, big cities act as magnets to attract

population from the peripheral areas.

The results of our paper have implications for policy. The existence of the urban growth

shadow effect on periphery counties does not necessarily imply welfare losses from the na-

tional perspective. The results documented in this paper suggest that a primary reason for

why periphery counties of a big city grow more slowly is that individuals migrate from the

periphery counties to the big city, and such an action is consistent with income maximization

in location choices. Therefore, the existence of the urban growth shadow effect can be per-

fectly consistent with aggregate efficiency. However, the urban shadow effect also warrants

government interventions. The evidence suggests that a disproportionately high fraction of

the migrants from the periphery counties to big cities are college-educated and prime-age

workers. Those who are left behind in the periphery counties are relatively non-college edu-

cated, either very young or very old people. The out-migrants presumably contribute more

to the local fiscal revenues compared to their consumption of public goods in per capita

terms; those who stay presumably consume more of the local public goods compared to

their contributions in per capita terms. Therefore, a strong urban growth shadow effect may

become a fiscal burden to the surrounding locations but a fiscal benefit to the big cities.

Hence, proper fiscal transfers between the core and periphery locations that correct for such

fiscal externalities are required.

11 From columns (1)–(3) of Table 9, we see some positive effects of proximity to big cities on the changes
in the share of high-school graduates in total population for counties located in the 50–250km distance range,
though most of such effects are statistically insignificant. This can be explained by the out migration of
agricultural workers in these areas, who typically have fewer years of schooling. The out-migration could
then raise the share of the population with a high-school degree among the people who stay.
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6 Conclusion

In this paper, we use consistent-boundary county-level data from China for 1990–2020 to

examine how an area’s growth is affected by its geographical proximity to a big city and the

mechanisms behind the effects. We find both a spillover effect and a growth shadow effect.

On the one hand, compared to the counties located 250 km and farther from a big city, the

counties located within 50 km of a big city grew faster, and they grew significantly faster

during the 2010s. On the other hand, we find that the counties located at a medium distance

grew significantly more slowly: during every decade between 1990 and 2020, a county’s being

within 150–250 km to a big city reduces decadal population growth by 2.9% to 3.5%. Over

time, the spillover effect becomes stronger and the growth shadow effect becomes weaker.

We propose a novel explanation for the existence of the urban growth shadow effect.

While previous theories and empirical papers interpret similar overall time trends in other

contexts as being driven by improved transportation technologies, we show that whether

counties have access to transportation networks cannot explain the existence of the ur-

ban shadow effect or the heterogeneity of the urban growth shadow effect across periphery

counties. Meanwhile, we find the initial agricultural employment share has much stronger

explanatory power. An investigation of the mechanisms suggests the important role played

by migration: big cities act as magnets for migrants from nearby regions and also from the

entire country. Counties dominated by the agricultural sector are more likely to send out

migrants in the presence of nearby big cities because their migrants’ opportunity costs are

lower. Moreover, agricultural employment share is also a key factor in determining the signs

and magnitudes of the effect of access to transportation networks on growth.

Our study derives three policy implications. First, when a country is in the process of

structural transformation, big cities on average impose a negative effect on the population

growth in the sense that these migrants are presumably more of a fiscal benefit to the

receiving cities and those who are left behind are more of a fiscal burden to the periphery

counties. Therefore, proper fiscal transfers between the core and periphery locations that

correct for such fiscal externalities are required.

Second, in evaluating the local effects of transportation networks that connect periphery

counties to the core cities, the share of agricultural employment in periphery counties is a key

factor to be considered, which determines the sign and magnitude of such an effect. Better

connection to big cities does not always benefit a periphery county—it oftentimes results in a

reduction in population growth rate for counties dominated by agriculture. However, better

road infrastructure could benefit the local residents by facilitating rural-urban migration

and getting access to more job opportunities. Therefore, in per capita terms or in aggregate
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terms, we might reach different conclusions regarding the local effect of a transportation

infrastructure project.

Third, China has a grand national plan to build 19 super regions, and through the massive

construction of high-speed rails in the 2010s,12 the Chinese government aims to decentralize

the population from the core cities to the periphery cities in the country. Despite this plan,

between 2010 and 2020, the population became increasingly concentrated in big cities. Our

results indicate that the massive transportation infrastructure during this period probably

did not contribute to more concentration of the population; instead, it probably led to a

higher degree of decentralization, as suggested in Baum-Snow et al. (2017). Meanwhile,

because China is experiencing a rapid structural transformation process, the movement of

agricultural workers from the rural, periphery areas to the non-agricultural sector—which

primarily takes place in high-density urban areas—is a major cause for why the population

became more concentrated in big cities during this period. As the agricultural sector contin-

ues to shrink in the next few decades, and with the further advancement in transportation

technologies, the population of China in the future is likely to be more decentralized than

the current level.

12 The mileage of high-speed railways in operation increased from 8,358 kilometers in 2010 to 37,900
kilometers in 2020.
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Appendix

Table A1: List of Big Cities in Each Period

Year Big Cities

1990 Shanghai, Beijing, Tianjin, Shenyang, Wuhan, Guangzhou,

Xi’an, Chongqing, Harbin, Chengdu, Nanjing, Zibo, Dalian,

Jinan, Changchun, Qingdao, Taiyuan, Liupanshui, Zhengzhou,

Zaozhuang, Dongguan, Shenzhen, Guiyang, Lanzhou, Tang-

shan, Hangzhou, Anshan, Qiqihar, Tai’an, Fuzhou, Shiji-

azhuang, Pingxiang, Fushun, Changsha, Nanchang, Yancheng,

Neijiang, Kunming, Datong, Suining

2000 Shanghai, Beijing, Shenzhen, Tianjin, Dongguan, Guangzhou,

Shenyang, Wuhan, Chengdu, Chongqing, Xi’an, Nanjing,

Harbin, Dalian, Jinan, Changchun, Zibo, Qingdao, Zhengzhou,

Taiyuan, Kunming, Guiyang, Zhongshan, Hangzhou, Fuzhou,

Changsha, Lanzhou, Liupanshui, Zaozhuang, Shijiazhuang,

Nanchang, Suining, Nanning, Tangshan, Xuzhou, Jilin, Bao-

tou, Hefei, Ningbo, Anshan

2010 Shanghai, Beijing, Shenzhen, Tianjin, Dongguan, Guangzhou,

Chengdu, Wuhan, Xi’an, Shenyang, Nanjing, Chongqing,

Harbin, Shantou, Changchun, Zhengzhou, Dalian, Suzhou, Ji-

nan, Qingdao, Wuxi, Nanning, Taiyuan, Hefei, Changzhou,

Hangzhou, Zibo, Zhongshan, Changsha, Xuzhou, Xiamen,

Guiyang, Fuzhou, Shijiazhuang, Kunming, Lanzhou, Tangshan,

Nanchang, Huizhou, Jiangmen

Notes: Our sample primarily focuses on two geographic units: constant boundary

1990 core cities and the surrounding counties. Big cities are defined as the top 40

core cities at the beginning of each decade.
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Table A2: Results of Sample Restricting Distance to a Big City

(1) (2) (3)

1990–2000 2000–2010 2010–2020

1–50 km 0.031 0.041 0.109***

(0.021) (0.031) (0.027)

50–150 km 0.011 -0.031** -0.007

(0.011) (0.014) (0.016)

150–250 km -0.025** -0.031** -0.025*

(0.012) (0.012) (0.015)

Observations 2,023 2,029 1,991

R-squared 0.033 0.058 0.192

Notes: Each column presents the result from a regression

of average ten-year population growth of locations exclusive

of the 40 big cities over the specified period on categorical

indicators if the nearest big city is within the specified dis-

tance bin. We leave locations without a big city from 250

km to 500 km as the excluded category as a robustness ex-

ercise. All regressions include a constant and the control

variables described in the text.
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Table A3: Baseline Results for Top 20 Definition

(1) (2) (3)

1990–2000 2000–2010 2010–2020

1–50 km 0.072** 0.125*** 0.091**

(0.035) (0.044) (0.039)

50–150 km 0.016 -0.033** -0.010

(0.012) (0.014) (0.013)

150–250 km -0.017* -0.040*** -0.041***

(0.010) (0.012) (0.010)

Observations 2,254 2,254 2,134

R-squared 0.042 0.078 0.200

Notes: Each column presents the result from a regression of

average ten-year population growth of locations exclusive of

the 20 big cities over the specified period on categorical indi-

cators if the nearest big city is within the specified distance

bin. All regressions include a constant and the control vari-

ables described in the text. Standard errors are clustered

at the prefecture level.
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Table A4: Agricultural Share as an Explanation for City Heterogeneity

1990–2000 2000–2010 2010–2020

(1) (2) (3) (4) (5) (6)

Baseline Agri share Baseline Agri share Baseline Agri share

Beijing*1–50 km 0.152** 0.090*** 0.550** 0.462** 0.282*** 0.198***

(0.064) (0.029) (0.238) (0.198) (0.074) (0.048)

Beijing*50–150 km -0.019 -0.034 0.039 0.043** 0.099* 0.085*

(0.023) (0.032) (0.031) (0.021) (0.054) (0.048)

Beijing*150–250 km -0.026 0.006 0.010 0.043** 0.003 0.020

(0.022) (0.021) (0.020) (0.021) (0.023) (0.022)

Shanghai*1–50 km 0.118*** -0.066*** 0.538*** 0.385*** 0.095*** -0.006

(0.013) (0.023) (0.013) (0.019) (0.014) (0.017)

Shanghai*50–150 km 0.081** -0.020 0.248*** 0.113* 0.056* -0.040

(0.031) (0.028) (0.067) (0.058) (0.031) (0.029)

Shanghai*150–250 km -0.018 -0.073*** 0.075** -0.022 0.042* -0.038

(0.028) (0.023) (0.031) (0.027) (0.026) (0.027)

Guangshen*1–50 km 0.429*** 0.289*** 0.222*** 0.023 0.227*** 0.109

(0.027) (0.030) (0.036) (0.026) (0.059) (0.068)

Guangshen*50–150 km 0.076 0.042 0.200*** 0.134** -0.014 -0.053**

(0.061) (0.046) (0.068) (0.057) (0.027) (0.026)

Guangshen*150–250 km -0.084** -0.099*** 0.035 0.024 -0.075*** -0.068***

(0.034) (0.033) (0.028) (0.029) (0.025) (0.026)

Agri share -0.400*** -0.399*** -0.277***

(0.034) (0.030) (0.029)

Observations 2,271 2,271 2,270 2,270 2,150 2,150

R-squared 0.058 0.251 0.118 0.309 0.203 0.282

Notes: We include initial agricultural employment share in the regression of city heterogeneity and examine whether

it absorbs the negative effect of distance. All regressions include a constant and control for initial population,

additional geographic control variables, and region dummies as described in the text. Standard errors are clustered

at the prefecture level.
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Table A5: Agriculture and Transportation as Mechanisms for the Urban Growth Shadow

Panel A Explanatory Power of Initial Agricultural Employment Share

1990–2000 2000–2010 2010–2020

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline OLS IV Baseline OLS IV Baseline OLS IV

1–50 km 0.025 0.028 0.032* 0.038 0.020 0.009 0.102*** 0.072*** 0.046

(0.021) (0.018) (0.017) (0.031) (0.025) (0.027) (0.027) (0.025) (0.035)

50–150 km 0.005 0.024** 0.019 -0.035*** -0.015 -0.004 -0.013 -0.008 -0.004

(0.011) (0.011) (0.013) (0.013) (0.013) (0.015) (0.016) (0.015) (0.017)

150–250 km -0.029** -0.010 -0.016 -0.035*** -0.013 -0.002 -0.033** -0.022 -0.013

(0.011) (0.012) (0.014) (0.012) (0.012) (0.015) (0.014) (0.013) (0.018)

Agri share -0.381*** -0.270* -0.391***-0.574*** -0.247*** -0.437**

(0.035) (0.156) (0.034) (0.149) (0.028) (0.214)

Observations 2,234 2,234 2,228 2,234 2,234 2,228 2,114 2,114 2,109

R-squared 0.049 0.224 0.209 0.071 0.260 0.220 0.207 0.272 0.230

Panel B Explanatory Power of Access to Highways

1990–2000 2000–2010 2010–2020

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline OLS IV Baseline OLS IV Baseline OLS IV

1–50 km 0.025 0.018 0.013 0.038 0.010 -0.051 0.102*** 0.095*** 0.078***

(0.021) (0.021) (0.021) (0.031) (0.032) (0.037) (0.027) (0.027) (0.030)

50–150 km 0.005 -0.008 -0.013 -0.035***-0.041***-0.056*** -0.013 -0.016 -0.024

(0.011) (0.011) (0.012) (0.013) (0.013) (0.013) (0.016) (0.016) (0.016)

150–250 km -0.029**-0.036***-0.039***-0.035***-0.035***-0.035*** -0.033** -0.034** -0.037***

(0.011) (0.012) (0.012) (0.012) (0.012) (0.012) (0.014) (0.014) (0.014)

Access to 0.001*** 0.002*** 0.068*** 0.218*** 0.030*** 0.100**

highways (0.000) (0.000) (0.013) (0.045) (0.008) (0.040)

Observations 2,234 2,230 2,230 2,234 2,234 2,234 2,114 2,114 2,114

R-squared 0.049 0.072 0.068 0.071 0.089 0.207 0.212 0.186
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Panel C Explanatory Power of Access to Railways

1990–2000 2000–2010 2010–2020

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline OLS IV Baseline OLS IV Baseline OLS IV

1–50 km 0.025 0.011 0.005 0.038 0.028 0.020 0.102***0.099***0.096***

(0.021) (0.021) (0.020) (0.031) (0.031) (0.031) (0.027) (0.027) (0.027)

50–150 km 0.005 0.002 0.001 -0.035***-0.039***-0.042*** -0.013 -0.014 -0.014

(0.011) (0.011) (0.011) (0.013) (0.013) (0.013) (0.016) (0.016) (0.016)

150–250 km -0.029** -0.027** -0.027** -0.035***-0.039***-0.041*** -0.033** -0.034** -0.035**

(0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.014) (0.014) (0.014)

Access to railways 0.047***0.067*** 0.048*** 0.085*** 0.030*** 0.057**

(0.007) (0.012) (0.008) (0.016) (0.010) (0.022)

Observations 2,234 2,234 2,234 2,234 2,234 2,234 2,114 2,114 2,114

R-squared 0.049 0.065 0.062 0.071 0.086 0.077 0.207 0.212 0.209

Notes: Panel A, Panel B, and Panel C report the results for using initial agricultural employment

share, access to highways, and access to railways as mechanisms for the urban shadow effect respec-

tively. In each panel, we compare baseline results, OLS results including corresponding counties’

initial characteristics, and 2SLS results for corresponding counties’ initial characteristics in the speci-

fied period. In Panel A, we use the Caloric Suitability Indices and average temperature in July from

1960–2019 as instruments for initial agricultural employment share. In Panel B, we use road density

in 1962 as an instrument for road density in 1990. Since the information on grades is missing in

the road network maps in 1962, we use access to railways in 1962 as an instrument for access to

highways (high-grade roads) in year 1999 and 2010. In Panel C, we use access to railways in 1962 as

an instrument for access to railways in each period. All regressions include a constant and control for

initial population, additional geographic control variables, and region dummies as described in the

text. Standard errors are clustered at the prefecture level.
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